SKNa 102

Stud Diode

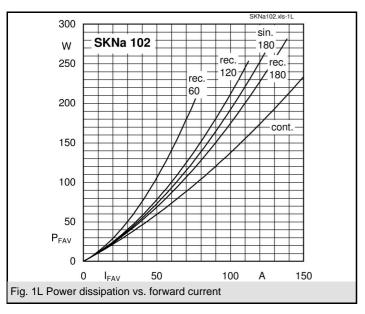
Avalanche Diode

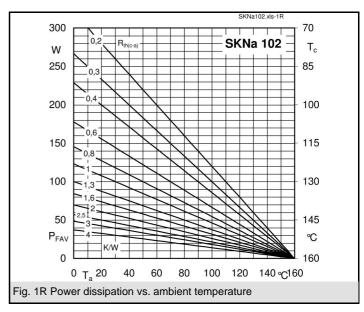
SKNa 102

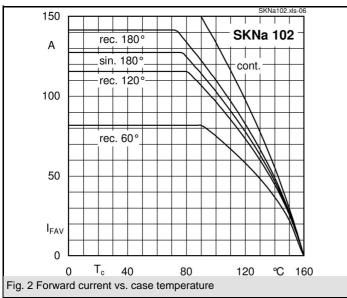
Publish Data

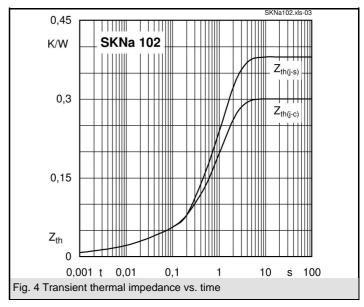
Features

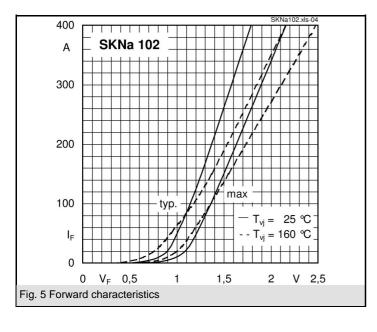
- Avalanche type reverse characteristic
- Reverse voltages up to 5000 V
- Hermetic metal case with ceramic insulator and extra long creepage distances
- Threaded stud ISO M12
- · Cooling via heatsinks
- SKN: Anode to stud

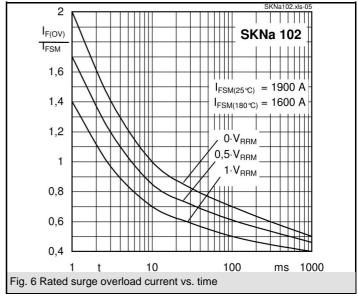

Typical Applications

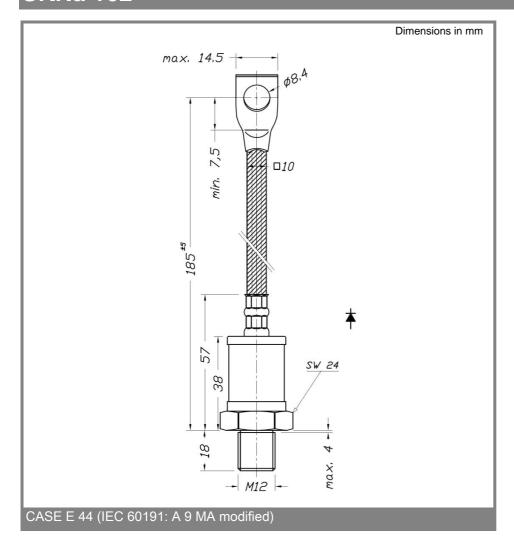

- High voltage rectifier diode for traction and heavy duty applications
- Series connections for high voltage applications
- Non-controllable and half-controllable rectifiers
- Free-wheeling diodes


V _{(BR)min}	I _{FRMS} = 200 A (maximum value for continuous operation)	C _{max}	R _{min}
V	I_{FAV} = 125 A (sin. 180; T_c = 80 °C)	μF	Ω
3600	SKNa 102/36		
4000	SKNa 102/40		
4200	SKNa 102/42		
4500	SKNa 102/45		
4600	SKNa 102/46		
4800	SKNa 102/48		
5000	SKNa 102/50		


Symbol	Conditions	Values	Units
I _{FAV}	sin. 180 ; T _c = 80 (102) °C	125 (100)	Α
I _D	K 1,1; T _a = 45 °C; B2 / B6	114 / 162	Α
	K 1,1F; T _a = 35 °C; B2 / B6	189 / 266	Α
I _{FSM}	T _{vj} = 25 °C; 10 ms	1900	Α
	$T_{vj} = 160 ^{\circ}\text{C}; 10 \text{ms}$	1600	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	18000	A²s
	T _{vj} = 160 °C; 8,3 10 ms	12500	A²s
V_{F}	T _{vi} = 25 °C; I _F = 300 A	max. 1,9	V
$V_{(TO)}$	T _{vi} = 150 °C	max. 1	V
r _T	T _{vj} = 150 °C	max. 3,7	mΩ
I_{RD}	$T_{vj} = 25 ^{\circ}\text{C}; V_{RD} = V_{(BR)min}$	max. 1000	μA
	$T_{vj} = 160 ^{\circ}\text{C}; V_{RD} = V_{(BR)min}$;	max. 15	mA
P _{RSM}	$T_{vj} = 160 ^{\circ}\text{C}; t_{p} = 10 \mu\text{s}$	36	kW
R _{th(j-c)}		0,3	K/W
R _{th(c-s)}		0,08	K/W
T _{vj}		- 40 + 160	°C
T _{stg}		- 40 + 160	°C
V _{isol}		-	V~
M _s	to heatsink	10	Nm
		90	lb.in.
а		5 * 9,81	m/s²
m	approx.	110	g
Case		E 44	







This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.